In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection.

نویسندگان

  • Salim Albukhaty
  • Hossein Naderi-Manesh
  • Taki Tiraihi
چکیده

BACKGROUND The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). METHODS The SPION was prepared and coated with PLL as transfection agent and the transfection efficiency was evaluated in rat NSC using enhanced green fluorescent protein-N1 plasmid containing GFP as a reporter gene. NSC was incubated for 24 h in cell culture media containing 25 µg/ml SPION and in different concentrations of PLL (0.25, 0.50, 0.75, 1 and 2 µg/ml). Cell viability was determined before and after transfection for every concentration using Trypan blue assay. Characterization of prepared uncoated (SPION) and coated (SPION-PLL) complexes were evaluated by a transmission electron microscope and the zeta potential. RESULTS PLL at 0.75 μg/ml showed optimal results with 25 μg/ml SPION concentration compared with other PLL concentrations (0.25, 0.50, 1 and 2 μg/ml). The 18% efficiency of the transfected cells showed green fluorescence. CONCLUSION Transfection with SPION is an efficient, non-viral gene transfere method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection

Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...

متن کامل

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

BACKGROUND Cell tracking is a powerful tool to understand cellular migration, dynamics, homing and function of stem cell transplants. Nanoparticles represent possible stem cell tracers, but they differ in cellular uptake and side effects. Their properties can be modified by coating with different biocompatible polymers. To test if a coating polymer, poly(L-lysine), can improve the biocompatibil...

متن کامل

A Model to Study the Phenotypic Changes of Insect Cell Transfection by Copepod Super Green Fluorescent Protein (cop-GFP) in Baculovirus Expression System

Background: Baculovirus expression system is one of the most attractive and powerful eukaryotic expression systems for the production of recombinant proteins. The presence of a biomarker is required to monitor transfection efficiency or protein expression levels in insect cells. Methods: The aim of this study was to construct a baculovirus expression vector encoding a copepod super green fluore...

متن کامل

Transfection of bovine spermatogonial stem cells in vitro

Spermatogonial stem cells (SSCs) are the only stem cells in adults that can transfer genetic information to the future generations. Considering the fact that a single SSC gives rise to a vast number of spermatozoa, genetic manipulation of these cells is a potential novel technology with feasible application to various animal species. The aim of this study was to evaluate enhanced green fluoresc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Iranian biomedical journal

دوره 17 2  شماره 

صفحات  -

تاریخ انتشار 2013